

Bluetooth Library
Manual

(Version 1.05)

CASIO Computer Co., Ltd.
Copyright ©2011. All rights reserved.

January 2011

 2

Table of the Contents
Editorial Record 4

Chapter 1. Overview 5
Chapter 2. Operation Environment 6
Chapter 3. Structures 7

3.1 BTST_LOCALINFO 7
3.2 BTST_DEVICEINFO 8

Chapter 4. Constants 9
4.1 Device Mode 9
4.2 Device Class 10
4.3 Service UUID 13
4.4 Error Flag 15

Chapter 5. Functions List 18
5.1 BTInitialize 20
5.2 BTDeInitialize 21
5.3 BTGetLocalInfo 22
5.4 BTSetLocalInfo 23
5.5 BTInquiry 24
5.6 BTGetDeviceInfo 26
5.7 BTGetServiceInfo 28
5.8 BTSelectDevice 29
5.9 BTSetPassKey 31
5.10 BTTrustDevice 32
5.11 BTSetWakeOnStatus 33
5.12 BTGetWakeOnStatus 34
5.13 BTGetDeviceHandle 35
5.14 BTGetLastError 36
5.15 BTRegisterLocalInfo 37
5.16 BTRegisterDeviceInfo 38
5.17 BTSearchDeviceInfo 39
5.18 BTDeleteDeviceInfo 41
5.19 BTGetDefaultDeviceInfo 42
5.20 BTSetDefaultDevice 43
5.21 BTGetLibraryStatus 45
5.22 BTGetDeviceName 46
5.23 BTGetConnectionStatus 47
5.24 BTSetConnectionParameter 48
5.25 BTGetConnectionParameter 49
5.26 BTSetAFHStatus 50
5.27 BTGetAFHStatus 52
5.28 BTWaitForBtReady 53
5.29 BTConnectSerial 54
5.30 BTSendSerialData 56
5.31 BTReceiveSerialData 57
5.32 BTDisconnectSerial 59
5.33 BTSetPANStatus 60
5.34 BTGetPANStatus 61
5.35 BTConnectPAN 62

 3

5.36 BTDisconnectPAN 63
5.37 BTConnectHeadset 64
5.38 BTDisconnectHeadset 65
5.39 BTSetSoundPath 66
5.40 BTGetSoundPath 67
5.41 BTSetHeadsetGain 68
5.42 BTGetHeadsetGain 69
5.43 BTSetHeadsetServerStatus 70
5.44 BTGetHeadsetServerStatus 71
5.45 BTSetOBEXFolder 72
5.46 BTGetOBEXFolder 73
5.47 BTSendOBEXFile 74

Chapter 6. Connection Procedure by Profile 75
6.1 Registering Partner Bluetooth Equipment 75
6.2 Connections via Serial Profile 76
6.3 Connections via Dial-Up Profile 78
6.4 Connections via LAN Profile 79

Chapter 7. Notes to Programming 80
7.1 Communication Profiles 80
7.2 Bluetooth Communication Modes 81

Chapter 8. Device Emulator 82
8.1 BTInit.ini 82
8.2 BTDeviceInfo[n].ini 82
8.3 BTReg.ini 83

No part of this document may be produced or transmitted in any form or by any means, electronic or
mechanical, for any purpose, without the express written permission of CASIO Computer Co., Ltd.
in Tokyo Japan. Information in this document is subject to change without advance notice. CASIO
Computer Co., Ltd. makes no representations or warranties with respect to the contents or use of this
manual and specifically disclaims any express or implied warranties of merchantability or fitness for
any particular purpose.

© 2011 CASIO Computer Co., Ltd. All rights reserved.

 4

Editorial Record
Manual
Version

no.
Date edited Page Content

1.00 October 2008 Original
24 In Chapter 5.5, the prototype of the function is corrected.
26 In Chapter 5.6, the prototype of the function is corrected.
26 In Chapter 5.6, the description about the parameters is

updated.
28 In Chapter 5.7, the description about the function is

updated.
29 In Chapter 5.8, the prototype of the function is corrected.
31 In Chapter 5.9, the prototype of the function is corrected.
32 In Chapter 5.10, the prototype of the function is corrected.
39 In Chapter 5.17, the prototype of the function is corrected.
43 In Chapter 5.20, the prototype of the function is corrected.
46 In Chapter 5.22, the description about the parameters is

updated.
50 In Chapter 5.26, the description about the parameters is

corrected.

1.01 March 2009

8 In Chapter 2, “Microsoft® Windows Mobile 6.1” is
added to “OS”.

1.02 January 2010 76 In Chapter 6.2, “Connections via Serial Proile” is
corrected.

1.03 February 2010 - IT-800 is added.
1.04 June 2010 29 In Chapter 5.8, parameter is appended.
1.05 January 2011 - IT-300 and DT-X8 are added.

 5

1. Overview
The Bluetooth Library makes use of the Bluetooth module integrated in the terminal to provide
connection and communication functions with other Bluetooth equipment.

The Bluetooth Class Library is a wrapper library layer. The library can be directly manipulated
by .NET Compact Framework application.

The use of Bluetooth Library enables the enhancement of source code compatibility for mobile
applications regardless of handheld terminal model.

With regard to the function for either the “unsupported error” or “parameter error”, at time of
process execution, the user is notified that the function is unsupported or that the process itself
should be disabled. In this way it is possible to describe a source code that is aware of the
“functions” rather than a source code that is aware of the handheld terminal “models” (and the
devices integrated in those handheld terminal models), which enables the development of a business
application style that attaches “importance to functions”.

Note:
The aim of this library is to enhance the source code compatibility for mobile business application, it
is not intended to guarantee the compatibility of functions of integrated devices. In actuality it
decides whether the “unsupported error” or “parameter error” is required to notify the user that
functions are not supported or that the actual process should be disabled.
Also, for the business application to actually run in multiple handheld terminal models, it must be
rebuilt to agree with the CPU types (ARMV4T, ARMV4 …).

 6

2. Operation Environment
Applicable Handheld Terminals

• IT-600
• DT-X11
• DT-X7
• DT-X30
• IT-3100
• IT-800
• IT-300
• DT-X8

OS

• Microsoft® WindowsCE 5.0
• Microsoft® WindowsCE 6.0
• Microsoft® Windows Mobile 6.1
• Microsoft® Windows Mobile 6.5
• Microsoft® Windows Mobile 6.5.3

Development Environment

• Microsoft® eMbedded C++ Version 4.0 + Service Pack 4
• Microsoft® Visual Studio 2005 + Service Pack 1
• Microsoft® Visual Studio 2008 + Service Pack 1

Supplied Files

• BluetoothLib.h
• BluetoothLib.lib
• BluetoothLib.dll
• BluetoothLibNet.dll (Class Library)

Steps to Start Up

For Visual C++:
1. Include the header file, BluetoothLib.h, in the source program and define it as the library that

uses the BluetoothLib.lib file.
2. BluetoothLib.dll is already integrated by default in the terminal.

For Visual Basic and Visual C#:
1. Add BluetoothLibNet.dll to the Project Reference.
2. BluetoothLib.dll is already integrated by default in the terminal.
3. Copy BluetoothLibNet.dll into the same folder where the execution module is stored.

 7

3. Structures
The following shows the structure systems offered by the Bluetooth Library.

Table 3.1 Structure

Structure Description Function to use
BTST_LOCALINFO Structure that saves the Bluetooth device

information of the terminal.
BTGetLocalInfo
BTSetLocalInfo

BTST_DEVICEINFO Structure that saves the communication
partner’s Bluetooth device information.

BTGetDeviceInfo
BTGetServiceInfo
BTSelectDevice
BTTrustDevice
BTRegisterDeviceInfo
BTSearchDeviceInfo
BTDeleteDeviceInfo
BTGetDefaultDeviceInfo
BTSetDefaultDevice

3.1 BTST_LOCALINFO
This structure saves the terminal’s Bluetooth device information.

struct _btlocalinfo {

 TCHAR LocalName[82]; : Bluetooth equipment name

 TCHAR LocalAddress[18]; : Bluetooth equipment address

 LONG LocalDeviceMode; : Bluetooth device mode

 LONG LocalClass1 : Bluetooth device class 1 (local)

 LONG LocalClass2 : Bluetooth device class 2 (local)

 LONG LocalClass3 : Bluetooth device class 3 (local)

 BOOL Authentication; : Bluetooth authentication setting flag

 BOOL Encryption; : Cipher setting flag

} BTST_LOCALINFO;

The following functions use the BTST_LOCALINFO structure.

BTGetLocalInfo
BTSetLocalInfo

 8

3.2 BTST_DEVICEINFO
This structure saves the communication partner’s Bluetooth device information.

struct _btdeviceinfo {

 LONG DeviceErrorFlag; : Error flag

 HANDLE DeviceHandle; : Device handle

 TCHAR DeviceName[82]; : Bluetooth equipment name

 TCHAR DeviceAddress[18]; : Bluetooth equipment address

 LONG DeviceClass1; : Bluetooth device class 1(Destination)

 LONG DeviceClass2; : Bluetooth device class 2(Destination)

 LONG DeviceClass 3; : Bluetooth device class 3(Destination)

 DWORD ProfileNumber; : Usable profile number

 WORD ProfileUUID[16]; : Usable profile type

} BTST_DEVICEINFO;

The following functions use the BTST_DEVICEINFO structure.

BTGetDeviceInfo
BTGetServiceInfo
BTSelectDevice
BTTrustDevice
BTRegisterDeviceInfo
BTSearchDeviceInfo
BTDeleteDeviceInfo
BTGetDefaultDeviceInfo
BTSetDefaultDevice

 9

4. Constants
The following show the constants provided by the Bluetooth Library.

Table 4.1 Constants

Constant Description
Device Mode Access permission for other Bluetooth devices
Device Class Bluetooth equipment attributes
Service UUID Services usable with Bluetooth device
Error Flag Error detailed information

4.1 Device Mode
The device mode is a set of parameters for deciding whether or not the integrated Bluetooth device
in the terminal will give access permission to other Bluetooth devices. The device mode retrieves
and sets parameters listed in the table below using the LocalDeviceMode member of
BTST_LOCALINFO structure. The default setting is BTMODE_BOTH_ENABLED.

Table 4.2 Device mode

Setting Value Description

DT-X11
IT-600
DT-X7
DT-X30
IT-3100
IT-800
IT-300
DT-X8

BTMODE_NO_SCANS Inquiry and connection with other
Bluetooth devices are not permitted.

Y

BTMODE_INQUIRY_ENABLED Only inquiries from other Bluetooth
devices are permitted.

Y

BTMODE_PAGE_ENABLED Only connections with other Bluetooth
devices are permitted.

Y

BTMODE_BOTH_ENABLED Inquiry and connection with other
Bluetooth devices are permitted.

Y

BTMODE_LIMITED_ACCESSIBLE Only connections with specified parties
are permitted.

--

 10

4.2 Device Class
The device class is parameter showing what attributes Bluetooth equipment has. There are three
kinds of device class parameters; major service class, major device class and minor device class. Set
each class to the respective members of BTST_LOCALINFO structure.

LocalClass1 ← Set the major device class.
LocalClass2 ← Set the minor device class.
LocalClass3 ← Set the major service class.

Major Device Class

The major device class is parameter that shows the attributes of Bluetooth device. Just one type of
the parameters listed below can be used.

BTCOD_MAJOR_MISC
BTCOD_MAJOR_COMPUTER
BTCOD_MAJOR_PHONE
BTCOD_MAJOR_LAN_ACCESS_POINT
BTCOD_MAJOR_AUDIO
BTCOD_MAJOR_PERIPHERAL
BTCOD_MAJOR_IMAGING
BTCOD_MAJOR_UNCLASSIFIED

Minor Device Class

The minor device class is parameter that shows the attributes of Bluetooth device. The usable minor
device classes are determined for each major device class.

The following parameter combines for use with all the major device classes except
BTCOD_MAJOR_LAN_ACCESS_POINT.

BTCOD_MINOR_UNCLASSIFIED

The following parameters combine for use with BTCOD_MAJOR_COMPUTER device class.

BTCOD_COMPUTER_DESKTOP
BTCOD_COMPUTER_SERVER
BTCOD_COMPUTER_LAPTOP
BTCOD_COMPUTER_HANDHELD
BTCOD_COMPUTER_PALM
BTCOD_COMPUTER_WEARABLE

The following parameters combine for use with BTCOD_MAJOR_PHONE device class.

BTCOD_PHONE_CELLULAR
BTCOD_PHONE_CORDLESS
BTCOD_PHONE_SMART
BTCOD_PHONE_MODEM

 11

The following parameters combine for use with BTCOD_MAJOR_LAN_ACCESS_POINT device
class.

BTCOD_LAP_FULLY_AVAILABLE
BTCOD_LAP_USAGE_1
BTCOD_LAP_USAGE_2
BTCOD_LAP_USAGE_3
BTCOD_LAP_USAGE_4
BTCOD_LAP_USAGE_5
BTCOD_LAP_USAGE_6
BTCOD_LAP_NOT_AVAILABLE

The following parameters combine for use with BTCOD_MAJOR_AUDIO device class.

BTCOD_AUDIO_HEADSET_PROFILE
BTCOD_AUDIO_HANDS_FREE
BTCOD_AUDIO_RESERVED1
BTCOD_AUDIO_MICROPHONE
BTCOD_AUDIO_LOUDSPEAKER
BTCOD_AUDIO_HEADPHONES
BTCOD_AUDIO_PORTABLE_AUDIO
BTCOD_AUDIO_CAR_AUDIO
BTCOD_AUDIO_SET_TOP_BOX
BTCOD_AUDIO_HI_FI_DEVICE
BTCOD_AUDIO_VCR
BTCOD_AUDIO_VIDEO_CAMERA
BTCOD_AUDIO_CAMCORDER
BTCOD_AUDIO_VIDEO_MONITOR
BTCOD_AUDIO_DISPLAY_LOUDSPEAKER
BTCOD_AUDIO_VIDEO_CONFERENCING
BTCOD_AUDIO_RESERVED
BTCOD_AUDIO_GAMING_TOY

The following parameters combine for use with BTCOD_MAJOR_PERIPHERAL device class.

BTCOD_PP_KEYBOARD
BTCOD_PP_POINTING_DEVICE
BTCOD_PP_COMBO_DEVICE

The following parameters combine for use with the minor device class of
BTCOD_MAJOR_PERIPHERAL device class.

BTCOD_PP_UNCATEGORIZED
BTCOD_PP_JOYSTICK
BTCOD_PP_GAMEPAD
BTCOD_PP_REMOTE_CONTROL
BTCOD_PP_SENSING_DEVICE

 12

The following parameters combine for use with BTCOD_MAJOR_IMAGING device class.

BTCOD_IMAGING_RESERVED1
BTCOD_IMAGING_RESERVED2
BTCOD_IMAGING_DISPLAY
BTCOD_IMAGING_CAMERA
BTCOD_IMAGING_SCANNER
BTCOD_IMAGING_PRINTER

Major Service Class

The major service class is parameter that shows the service attributes of Bluetooth device. The
following parameters are usable. By calculating a sum of the values in logical OR for each
parameter, multiple major class service settings can be made.

BTCOD_LIMITED_DISCOVERABLE
BTCOD_RESERVED_1
BTCOD_RESERVED_2
BTCOD_POSITIONING
BTCOD_NETWORKING
BTCOD_RENDERING
BTCOD_CAPTURING
BTCOD_OBJECT_TRANSFER
BTCOD_AUDIO
BTCOD_TELEPHONY
BTCOD_INFORMATION

Retrieving and Setting Device Class Parameters

In order to retrieve the terminal’s parameters of the device class, first carry out BTGetLocalInfo
function, and then refer to each member, LocalClass1, LocalClass2, and LocalClass3, of
BTST_LOCALINFO structure.
To retrieve other Bluetooth device’s parameters of the device class, first carry out
BTGetDeviceInfo function, and then refer to each member, DeviceClass1, DeviceClass2, and
DeviceClass3, BTST_DEVICEINFO structure.
To set the device class for the terminal, first set the device class parameters for reach local class
member of BTST_LOCALINFO structure, and then carry out BTSetLocalInfo function.

 13

4.3 Service UUID
Service UUID is parameters used for retrieving services available on the communication partner
Bluetooth device. Service class value is saved in the ProfileUUID member of BTST_DEVICEINFO
structure when BTGetServiceInfo function is carried out. The following parameters can be used.

Table 4.3 Service UUID

Service UUID

D
T-

X
11

IT

-6
00

D

T-
X

7
D

T-
X

30

IT
-3

10
0

IT
-8

00

IT
-3

00

D
T-

X
8

BTUUID_SDP_PROTOCOL Y
BTUUID_RFCOMM_PROTOCOL Y
BTUUID_TCS_PROTOCOL Y
BTUUID_CTP_PROTOCOL Y
BTUUID_L2CAP_PROTOCOL Y
BTUUID_IP_PROTOCOL Y
BTUUID_UDP_PROTOCOL Y
BTUUID_TCP_PROTOCOL Y
BTUUID_TCS_AT_PROTOCOL Y
BTUUID_OBEX_PROTOCOL Y
BTUUID_FTP_PROTOCOL Y
BTUUID_HTTP_PROTOCOL Y
BTUUID_WSP_PROTOCOL Y
BTUUID_BNEP_PROTOCOL Y
BTUUID_UPNP_PROTOCOL Y
BTUUID_HIDP_PROTOCOL Y
BTUUID_SERVICE_DISCOVERY_SERVER Y
BTUUID_BROWSE_GROUP_DESCRIPTOR Y
BTUUID_PUBLIC_BROWSE_ROOT Y
BTUUID_PUBLIC_BROWSE_GROUP Y
BTUUID_SERIAL_PORT Y
BTUUID_LAN_ACCESS_USING_PPP Y
BTUUID_DIALUP_NETWORKING Y
BTUUID_IR_MC_SYNC Y
BTUUID_OBEX_OBJECT_PUSH Y
BTUUID_OBEX_FILE_TRANSFER Y
BTUUID_IR_MC_SYNC_COMMAND Y
BTUUID_HEADSET Y
BTUUID_CORDLESS_TELEPHONY Y
BTUUID_INTERCOM Y
BTUUID_FAX Y
BTUUID_HEADSET_AUDIO_GATEWAY Y
BTUUID_WAP Y

Continue.

 14

Service UUID

D
T-

X
11

IT

-6
00

D

T-
X

7
D

T-
X

30

IT
-3

10
0

IT
-8

00

IT
-3

00

D
T-

X
8

BTUUID_WAP_CLIENT Y
BTUUID_PANU Y
BTUUID_NAP Y
BTUUID_GN Y
BTUUID_DIRECT_PRINTING Y
BTUUID_REFERENCE_PRINTING Y
BTUUID_IMAGING Y
BTUUID_IMAGING_RESPONDER Y
BTUUID_IMAGING_AUTOMATIC_ARCHIVE Y
BTUUID_IMAGING_REFERENCE_OBJECTS Y
BTUUID_HANDSFREE Y
BTUUID_HANDSFREE_AUDIO_GATEWAY Y
BTUUID_DIRECT_PRINTING_REFERENCE_OBJECTS Y
BTUUID_REFLECTED_UI Y
BTUUID_BASIC_PRINTING Y
BTUUID_PRINTING_STATUS Y
BTUUID_HUMAN_INTERFACE_DEVICE_SERVICE Y
BTUUID_HARDCOPY_CABLE_REPLACEMENT Y
BTUUID_CHR_PRINT Y
BTUUID_HCR_SCAN Y
BTUUID_COMMON_ISDN_ACCESS Y
BTUUID_VIDEO_CONFERENCING_GW Y
BTUUID_PNP_INFORMATION Y
BTUUID_GENERIC_NETWORKING Y
BTUUID_GENERIC_FILE_TRANSFER Y
BTUUID_GENERIC_AUDIO Y
BTUUID_GENERIC_TELEPHONY Y
BTUUID_CTP Y

 15

4.4 Error Flag
The error flag consists of error category flag and error status flag returned by function.

Error Category Flag

The error category flags express the category of an error that has occurred.
BTERR_CAT_NO_CATEGORY
BTERR_CAT_UART
BTERR_CAT_OSIF
BTERR_CAT_L2HCI
BTERR_CAT_RFCOMM
BTERR_CAT_SDK
BTERR_CAT_LYM
BTERR_CAT_IPC_RPC
BTERR_CAT_OBEX
BTERR_CAT_BLUETOOTH
BTERR_CAT_WSADAPTER
BTERR_CAT_WINSOCK_2X
BTERR_CAT_BNEP
BTERR_CAT_WINDOWS_SYSTEM
BTERR_CAT_WINDOWS_REGISTRY

 16

Error Status Flag

The error status flags express the status of an error.
BTERR_SUCCESS
BTERR_INVALID_PARAMETER_1
BTERR_INVALID_PARAMETER_2
BTERR_INVALID_PARAMETER_3
BTERR_INVALID_PARAMETER_4
BTERR_INVALID_PARAMETER_5
BTERR_INVALID_PARAMETER_6
BTERR_INVALID_PARAMETER_7
BTERR_INVALID_PARAMETER_8
BTERR_INVALID_PARAMETER_9
BTERR_INVALID_PARAMETER_10
BTERR_INVALID_PARAMETER_11_OR_MORE
BTERR_FAILED
BTERR_PENDING
BTERR_NO_MEMORY
BTERR_INVALID_PARAMETER
BTERR_OPERATION_FAILED
BTERR_INVALID_HANDLE
BTERR_CONNECTION_CLOSED
BTERR_BUFFER_TOO_SMALL
BTERR_END_OF_LIST
BTERR_ALREADY_EXISTS
BTERR_NOT_FOUND
BTERR_OVERFLOW
BTERR_TIMEOUT
BTERR_NOT_IMPLEMENTED
BTERR_NO_RESOURCES
BTERR_INVALID_CONNECTION
BTERR_UNINITIALIZED
BTERR_UNLOADING
BTERR_NO_SERVER
BTERR_INVALID_STATE
BTERR_HW_ERROR
BTERR_DOES_NOT_EXIST
BTERR_CONNECTION_FAILED
BTERR_CONNECTION_LOST
BTERR_EARLY_RETURN
BTERR_CANCELLED_BY_USER
BTERR_UNAUTHORIZED
BTERR_INVALID_CHANNEL
BTERR_CONFLICT
BTERR_COULD_NOT_WRITE_TO_FILE
BTERR_SHARE_DOES_NOT_EXIST
BTERR_SCATTERNET
BTERR_PACKET_DROPPED
BTERR_MALFORMED_PACKET

 17

BTERR_REDUNDANT
BTERR_COULD_NOT_OPEN_FILE
BTERR_TCPIP_NOT_AVAILABLE
BTERR_INVALID_CRITICAL_SECTION
BTERR_BIND
BTERR_OPENING_SOCKET
BTERR_MAXIMUM_RECURSION
BTERR_NO_MATCH
BTERR_PROTOCOL_UNAVAILABLE
BTERR_VERSION
BTERR_VALUE_NOT_FOUND
BTERR_SET_STRING_VALUE
BTERR_SET_UINT_VALUE
BTERR_SET_BIN_VALUE
BTERR_UNK_VALUE_TYPE
BTERR_MALFORMED_ADDRESS
BTERR_INVALID_PORT
BTERR_INVALID_UUID
BTERR_SERVICE_DOES_NOT_EXIST
BTERR_OBJECT_TYPE_INVALID
BTERR_DEFAULT_OBJECT_NOT_SET
BTERR_MALFORMED_PROPERTY
BTERR_COULD_NOT_READ_FILE
BTERR_FILE_NOT_FOUND
BTERR_DIRECTORY_NOT_FOUND
BTERR_CONNECTED
BTERR_MALFORMED_PRINTABLE_STRING
BTERR_MAX_FILESIZE_REACH
BTERR_LIB_INIT
BTERR_APP_EXIST
BTERR_DEVICE_LIST
BTERR_DEVICE_ADDRESS
BTERR_POWER_MODULE
BTERR_LIB_REINIT
BTERR_REG_OPEN
BTERR_REG_WRITE
BTERR_REG_READ
BTERR_REG_DELETE
BTERR_REG_NO_DATA
BTERR_REG_NOT_FOUND

 18

5. Functions List
Table 5.1 Bluetooth Library functions

Function Description

D
T-

X
11

IT

-6
00

D

T-
X

7
D

T-
X

30

IT
-3

10
0

IT
-8

00

IT
-3

00

D
T-

X
8

BTInitialize Initializes Bluetooth protocol stack. Y Y Y Y Y Y Y Y
BTDeInitialize Closes the resource for Bluetooth

protocol stack.
Y Y Y Y Y Y Y Y

BTGetLocalInfo Retrieves Bluetooth device information. Y Y Y Y Y Y Y Y
BTSetLocalInfo Sets up Bluetooth device information. Y Y Y Y Y Y Y Y
BTInquiry Carries out inquiry for Bluetooth device. Y Y Y Y Y Y Y Y
BTGetDeviceInfo Retrieves device information about

Bluetooth device to be connected.
Y Y Y Y Y Y Y Y

BTGetServiceInfo Retrieves service information for
Bluetooth device that communicates.

Y Y Y Y Y Y Y Y

BTSelectDevice Specifies Bluetooth device to be
connected.

Y Y Y Y Y Y Y Y

BTSetPassKey Sets up Pass key. Y Y Y Y Y Y Y Y
BTTrustDevice Trusts Bluetooth device. Y Y Y Y Y Y Y Y
BTSetWakeOnStatus Sets up Bluetooth WakeOn function. - Y Y - - - - -
BTGetWakeOnStatus Retrieves setting status for Bluetooth

WakeOn function.
- Y Y - - - - -

BTGetDeviceHandle Retrieves device handle for Bluetooth
device.

- - - - - - - -

BTGetLastError Retrieves detailed error information. Y Y Y Y Y Y Y Y
BTRegisterLocalInfo Registers Bluetooth local information in

the registry.
Y Y Y Y Y Y Y Y

BTRegisterDeviceInfo Registers Bluetooth device information in
the registry.

Y Y Y Y Y Y Y Y

BTSearchDeviceInfo Retrieves Bluetooth device information
from the registry.

Y Y Y Y Y Y Y Y

BTDeleteDeviceInfo Deletes Bluetooth device information in
the registry.

Y Y Y Y Y Y Y Y

BTSetDefaultDevice Sets up default Bluetooth device. Y Y Y Y Y Y Y Y
BTGetDefaultDeviceInfo Retrieves default Bluetooth device. Y Y Y Y Y Y Y Y
BTGetLibraryStatus Retrieves current status of Bluetooth

library.
Y Y Y Y Y Y Y Y

BTGetDeviceName Retrieves Bluetooth device name by
specifying Bluetooth address.

Y Y Y Y Y Y Y Y

BTGetConnectionStatus Retrieves connection status with
Bluetooth device.

Y Y Y Y Y Y Y Y

BTSetConnectionParameter Sets up parameters to be used for
connecting to Bluetooth device.

Y Y Y Y Y - - -

BTGetConnectionParameter Retrieves parameters to be used to
connecting Bluetooth device.

Y Y Y Y Y - - -

 19

BTSetAFHStatus Sets up Bluetooth AFH mode. Y Y Y Y Y - - -
BTGetAFHStatus Retrieves setting status of Bluetooth

AFH.
Y Y Y Y Y - - -

BTWaitForBtReady Wait for time period to be elapsed until
when communication takes place again
after BTDeinitialize function is carried
out.

- Y Y Y Y Y Y Y

BTConnectSerial Establishes connection using Bluetooth
virtual serial profile.

Y Y Y Y Y Y Y Y

BTSendSerialData Sends data using Bluetooth virtual serial
profile.

Y Y Y Y Y Y Y Y

BTReceiveSerialData Receives data using Bluetooth virtual
serial profile.

Y Y Y Y Y Y Y Y

BTDisconnectSerial Disconnects Bluetooth virtual serial
profile.

Y Y Y Y Y Y Y Y

BTSetPANStatus Sets up Bluetooth PAN adaptor status. Y Y Y Y Y - - -
BTGetPANStatus Retrieves Bluetooth PAN adaptor status. Y Y Y Y Y - - -
BTConnectPAN Establishes connection using Bluetooth

PAN profile.
Y Y Y Y Y - - -

BTDisconnectPAN Disconnects Bluetooth PAN profile. Y Y Y Y Y - - -
BTConnectHeadset Establishes connection to Bluetooth

headset.
Y Y Y - - - - -

BTDisconnectHeadset Disconnects from Bluetooth headset. Y Y Y - - - - -
BTSetSoundPath Sets up sound path for terminal. Y Y Y - - - - -
BTGetSoundPath Retrieves status of sound path for

terminal.
Y Y Y - - - -

BTSetHeadsetGain Sets up gain for connected Bluetooth
headset.

Y Y Y - - - - -

BTGetHeadsetGain Retrieves gain for connected Bluetooth
headset.

Y Y Y - - - - -

BTSetHeadsetServerStatus Sets up operation to that of Bluetooth
headset server.

Y Y Y - - - - -

BTGetHeadsetServerStatus Retrieves operating status as Bluetooth
headset server.

Y Y Y - - - - -

BTSetOBEXFolder Sets up folder to be used in object push
profile communication.

Y Y Y Y Y - - -

BTGetOBEXFolder Retrieves folder to be used in object push
profile communication.

Y Y Y Y Y - - -

BTSendOBEXFile Uses object push profile to send file. Y Y Y Y Y - - -
Y: Supported.
- : Unsupported error responses when the function is specified.

 20

5.1 BTInitialize
This function initializes the Bluetooth protocol stack and the Bluetooth virtual COM port to use the
integrated Bluetooth device (module) in the terminal. Be sure to carry out this function before
establishing a connection with other Bluetooth device.

In the Device Emulator, the function performs according to the instruction specified in the
BTInit.ini file. See BTInit.ini for detail.

Calling Sequences

[C++]
LONG BTInitialize()

[Visual Basic]
Public Shared Function BTInitialize() As Int32

[C#]
public static Int32 BTInitialize()

Parameter

None

Return Values

BTERR_SUCCESS : Normal end
BTERR_FAILED : Failed to initialize.
BTERR_DRIVER : Driver error. In the Device Emulator, this value is not returned.
FUNCTION_UNSUPPORT : Unsupported error

 21

5.2 BTDeInitialize
This function disables the Bluetooth protocol stack and the Bluetooth virtual COM port to close the
use of the integrated Bluetooth device in the terminal. Be sure to carry out this function after
communication with other Bluetooth equipment is terminated.

In the Device Emulator, the function deletes also the PassKey set with BTSetPassKey function.

Calling Sequences

[C++]
LONG BTDeInitialize()

[Visual Basic]
Public Shared Function BTDeInitialize() As Int32

[C#]
public static Int32 BTDeInitialize()

Parameter

None

Return Values

BTERR_SUCCESS : Normal end
BTERR_FAILED : Failed to release the resource.
BTERR_DRIVER : Driver error. In the Device Emulator, this value is not returned.
FUNCTION_UNSUPPORT : Unsupported error

Note:

If user application closes Bluetooth communication without carrying out this function, an
error may occur when BTInitialize function is carried out a next time causing the
Bluetooth device integrated in the terminal not operable.

 22

5.3 BTGetLocalInfo
This function retrieves Bluetooth device information including all the members of
BTST_LOCALINFO structure. For parameters that can be retrieved for Bluetooth device mode and
Bluetooth device class, refer to Chapter 4 “Constants”.

In the Device Emulator, the function performs according to the instruction specified in the
BTInit.ini file. See BTInit.ini for detail.

Calling Sequences

[C++]
LONG BTGetLocalInfo(
 BTST_LOCALINFO *LocalInfo
)

[Visual Basic]
Public Shared Function BTGetLocalInfo(_
 ByVal LocalInfo As BTST_LOCALINFO _
) As Int32

[C#]
public static Int32 BTGetLocalInfo(
 BTST_LOCALINFO LocalInfo
);

Parameters

LocalInfo

This parameter is for specifying the Bluetooth device information structure.

Return Values

BTERR_SUCCESS : Normal end
BTERR_FAILED : Failed to retrieve device information.
BTERR_DRIVER : Driver error. In the Device Emulator, this value is not returned.
FUNCTION_UNSUPPORT : Unsupported error

 23

5.4 BTSetLocalInfo
This function sets up information about the Bluetooth device integrated in the terminal. Prior to
carrying out the function, be sure to carry out BTGetLocalInfo function and retrieve the current
Bluetooth device information. With this function, all device information can be set for the members
of the BTST_LOCALINFO structure, except for Bluetooth address. Refer to Chapter 4 “Constants”
concerning parameters that can be set for Bluetooth device mode and Bluetooth device class.

In the Device Emulator, the function performs according to the instruction specified in the
BTInit.ini file. See BTInit.ini for detail.

Calling Sequences

[C++]
LONG BTSetLocalInfo(
 BTST_LOCALINFO *LocalInfo
)

[Visual Basic]
Public Shared Function BTSetLocalInfo(_
 ByVal LocalInfo As BTST_LOCALINFO _
) As Int32

[C#]
public static Int32 BTSetLocalInfo(
 BTST_LOCALINFO LocalInfo
);

Parameters

LocalInfo

This parameter is for specifying the Bluetooth device information structure to set.

Return Values

BTERR_SUCCESS : Normal end
BTERR_FAILED : Failed to set device information.
BTERR_DRIVER : Driver error. In the Device Emulator, this value is not returned.
FUNCTION_UNSUPPORT : Unsupported error

Notes:

• Among the Bluetooth device information, the Bluetooth device address should not be changed.
If it is changed and this function is carried out, an error may occur.

• The cipher (encryption) setting flag can be set only when the Bluetooth authentication flag
has been set enabled. Set the cipher setting flag disabled when the Bluetooth authentication
flag has been disabled.

 24

5.5 BTInquiry
This function is for carrying out an inquiry for Bluetooth equipment.
In the Device Emulator, the function searches BTDeviceInfo[n].ni files and then retrieves the
number of the files resided.

Calling Sequences

[C++]
LONG BTInquiry(
 HANDLE *DeviceHandle,
 DWORD *DeviceNumber,
 DWORD InquiryTime
)

[Visual Basic]
Overloads Public Shared Function BTInquiry(_
 ByVal DeviceHandle As Int32(), _
 ByRef DeviceNumber As Int32, _
 ByVal InquiryTime As Int32 _
) As Int32

[C#]
public static Int32 BTInquiry(
 Int32[] DeviceHandle,
 ref Int32 DeviceNumber,
 Int32 InquiryTime
);

 25

Parameters

DeviceHandle

Set always “NULL” (in case of C++) or “IntPtr.Zero” (in case of Visual Basic or C#).

DeviceNumber

This parameter stores the number of Bluetooth equipment found by inquiry.

InquiryTime

This parameter is for specifying a time period in millisecond for carrying out the inquiry.

Return Values

BTERR_SUCCESS : Normal end
BTERR_FAILED : Failed to inquire Bluetooth equipment.
BTERR_DRIVER : Driver error. In the Device Emulator, this value is not returned.
FUNCTION_UNSUPPORT : Unsupported error

Note:

After carrying out BTInquiry function, retrieve Bluetooth equipment information with
BTGetDeviceInfo function.

 26

5.6 BTGetDeviceInfo
This function retrieves device information (equipment name, equipment address and device class) of
Bluetooth equipment inquired with BTInquiry function. Be sure to carry out this function after
carrying out BTInquiry function to retrieve inquired information.

In the Device Emulator, the function retrieves information about BTDeviceInfo[n].ini file. See
BTDeviceInfo[n].ini for detail.

Calling Sequences

[C++]
LONG BTGetDeviceInfo(
 BTST_DEVICEINFO *DeviceInfo,
 DWORD DeviceNumber,
 HANDLE *DeviceHandle
)

Overloads Public Shared Function BTGetDeviceInfo(_
 ByVal DeviceInfo As BTST_DEVICEINFO(), _
 ByVal DeviceNumber As Int32, _
 ByVal DeviceHandle As Int32() _
) As Int32

public static Int32 BTGetDeviceInfo(
 BTST_DEVICEINFO[] DeviceInfo,
 Int32 DeviceNumber,
 Int32[] DeviceHandle
);

 27

Parameters

DeviceInfo

This parameter is for specifying structure in array that stores Bluetooth equipment
information.
Be sure to allocate enough memories for the number of Bluetooth equipment retrieved with
BTInquiry function.

DeviceNumber

This parameter is for the number of structures in the DeviceInfo array.
Normally, this parameter is for the number of Bluetooth equipment retrieved with
BTInquiry function.

DeviceHandle

Set always “NULL” (in case of C++) or “IntPtr.Zero” (in case of Visual Basic or C#).

Return Values

BTERR_SUCCESS : Normal end
BTERR_FAILED : Failed to retrieve Bluetooth equipment information.
BTERR_DRIVER : Driver error. In the Device Emulator, this value is not returned.
FUNCTION_UNSUPPORT : Unsupported error

Notes:

• If Bluetooth equipment names cannot be retrieved, the Bluetooth equipment addresses will
be stored in the parameter for Bluetooth equipment names. Among the retrieved Bluetooth
equipment information, do not change information other than the Bluetooth equipment
names. As doing so may disable communication with the Bluetooth device.

• Once this function is carried out, the service information for Bluetooth equipment will be
initialized. To retrieve service information of Bluetooth equipment, first carry out
BTGetDeviceInfo function and then carry out BTGetServiceInfo function.

 28

5.7 BTGetServiceInfo
This function retrieves service information of Bluetooth equipment. In addition to the information
retrieved with BTGetDeviceInfo function, this function retrieves ProfileUUID information in
BTST_DEVICEINFO structure. See Chapter 4 "Constants" for concerning service class parameters
to retrieve. Prior to carrying out this function, carry out BTGetDeviceInfo function and retrieve
device information other than the service information.

In the Device Emulator, the function retrieves information about BTDeviceInfo[n].ini file. See
BTDeviceInfo[n].ini for detail.

Calling Sequences

[C++]
LONG BTGetServiceInfo(
 BTST_DEVICEINFO *DeviceInfo
)

[Visual Basic]
Public Shared Function BTGetServiceInfo(_
 ByVal DeviceInfo As BTST_DEVICEINFO _
) As Int32

[C#]
public static Int32 BTGetServiceInfo(
 BTST_DEVICEINFO DeviceInfo
);

Parameters

DeviceInfo

This parameter is for specifying the Bluetooth equipment information structure.

Return Values

BTERR_SUCCESS : Normal end
BTERR_FAILED : Failed to retrieve Bluetooth equipment service information.
BTERR_DRIVER : Driver error. In the Device Emulator, this value is not returned.
FUNCTION_UNSUPPORT : Unsupported error

Notes:

• Even if this function is not carried out, it is still possible to establish communication with
Bluetooth equipment. Use this function to check types of supported communication profiles
by the partner Bluetooth equipment.

• Depending on Bluetooth equipment, it may be impossible to retrieve available profile
information for reasons such as that SDP (Service Discovery Profile) is not supported by the
equipment.

• After carrying out this function, if BTGetDeviceInfo function is carried out again, the
Bluetooth service information stored in the DeviceInfo parameter will be deleted.

 29

5.8 BTSelectDevice
This function specifies a partner Bluetooth equipment to communicate with. Carry out this function
to select partner Bluetooth equipment before starting Bluetooth communication.

Calling Sequences

[C++]
LONG BTSelectDevice(
 BTST_DEVICEINFO *DeviceInfo,
 LPTSTR PortName
)

[Visual Basic]
Overloads Public Shared Function BTSelectDevice(_
 ByVal DeviceInfo As BTST_DEVICEINFO, _
 ByVal PortName As String _
) As Int32

[C#]
public static Int32 BTSelectDevice(
 BTST_DEVICEINFO DeviceInfo,
 string PortName
);
;

Parameters

DeviceInfo

This parameter is for specifying partner Bluetooth equipment to communicate with. Specify
“NULL” (in case of C++) or “IntPtr.Zero” (in case of Visual Basic or C#) if the default
Bluetooth equipment is to be specified.

PortName

This parameter is for specifying the communication port selecting either of the values listed
below.

BTPORT_SERIAL : Virtual serial
BTPORT_DIALUP : Dial up
BTPORT_PAN : Bluetooth PAN
BTPORT_OBEX : OBEX Object Push
BTPORT_HEADSET : Headset

Return Values

BTERR_SUCCESS : Normal end
BTERR_FAILED : Failed to specify Bluetooth equipment.
BTERR_DRIVER : Driver error. In the Device Emulator, this value is not returned.
FUNCTION_UNSUPPORT : Unsupported error

 30

Note:

If this function is not carried out, Bluetooth equipment set by default with
BTSetDefaultDevice function will be specified as its partner Bluetooth equipment to
communicate with.

 31

5.9 BTSetPassKey
This function sets up PassKey used by the terminal. It is used when the terminal bonds with other
Bluetooth equipment, or when a request for PassKey is made by other Bluetooth equipment. Setting
the parameter can be made so that a request of the PassKey made by other Bluetooth equipment is
refused. The PassKey has been set will be effect until when BTSetPassKey or BTDeInitialize
function is carried out.

In the Device Emulator, this function writes information in BTDeviceInfo[n].ini file.

Calling Sequences

[C++]
LONG BTSetPassKey(
 LPTSTR PassKey
)

[Visual Basic]
Overloads Public Shared Function BTSetPassKey(_
 ByVal PassKey As String _
) As Int32

[C#]
public static Int32 BTSetPassKey(
 string PassKey
);

Parameters

PassKey

This parameter is for specifying the PassKey to set. If “NULL” (in case of C++) or
“IntPtr.Zero” (in case of Visual Basic or C#) is specified, a request from other Bluetooth
equipment will be refused.

Return Values

BTERR_SUCCESS : Normal end
BTERR_FAILED : Failed to set PassKey.
BTERR_DRIVER : Driver error. In the Device Emulator, this value is not returned.
FUNCTION_UNSUPPORT : Unsupported error

Note:

Prior to carrying out BTTrustDevice function, always carry out this function. If it is
necessary for other Bluetooth equipment to make a request of the PassKey to the terminal,
carry out this function to set it in advance.

 32

5.10 BTTrustDevice
This function bonds with other Bluetooth equipment specified by the terminal.

Calling Sequences

[C++]
LONG BTTrustDevice(
 BTST_DEVICEINFO *DeviceInfo,
 LPTSTR PortName
)

[Visual Basic]
Overloads Public Shared Function BTTrustDevice(_
 ByVal DeviceInfo As BTST_DEVICEINFO, _
 ByVal PortName As String _
) As Int32

[C#]
public static Int32 BTTrustDevice(
 BTST_DEVICEINFO DeviceInfo,
 string PortName
);

Parameters

DeviceInfo

This parameter is for specifying information about Bluetooth equipment that is bonded by
the terminal. If “NULL” (in case of C++) or “IntPtr.Zero” (in case of Visual Basic or C#) is
specified, the default Bluetooth equipment will be bonded.

PortName

BTPORT_SERIAL : Virtual serial
BTPORT_DIALUP : Dial up

Return Values

BTERR_SUCCESS : Normal end
BTERR_FAILED : Failed to bond Bluetooth equipment.
BTERR_DRIVER : Driver error. In the Device Emulator, this value is not returned.
FUNCTION_UNSUPPORT : Unsupported error

Notes:

• Prior to carrying out the function, carry out BTSetPassKey function to set PassKey used
when bonding. This function will return an error if a PassKey has not been set, or “NULL” or
null character string (’’’) has been specified in the parameter of BTSetPassKey function.

• In case where there is a bonding request made by other Bluetooth equipment, the PassKey set
with BTSetPassKey will automatically be sent, so this function does not need to be carried
out.

 33

5.11 BTSetWakeOnStatus
This function sets up the Bluetooth WakeOn function.

In the Device Emulator, the function writes information in BTInit.ini file.

Calling Sequences

[C++]
LONG BTSetWakeOnStatus(
 DWORD WakeOnStatus
)

[Visual Basic]
Public Shared Function BTSetWakeOnStatus(_
 ByVal WakeOnStatus As Int32 _
) As Int32

[C#]
public static Int32 BTSetWakeOnStatus(
 Int32 WakeOnStatus
);

Parameters

WakeOnStatus

This parameter is for specifying the Bluetooth WakeOn function for the terminal selecting
one of the values listed below.

BTWAKEON_ENABLE : Enable the Bluetooth WakeOn function.
BTWAKEON_DISABLE : Disable the Bluetooth WakeOn function.

Return Values

BTERR_SUCCESS : Normal end
BTERR_FAILED : Failed to set up device information.
BTERR_DRIVER : Driver error. In the Device Emulator, this value is not returned.
FUNCTION_UNSUPPORT : Unsupported error

Note:

Set up the Bluetooth WakeOn function before suspending the terminal.

 34

5.12 BTGetWakeOnStatus
This function retrieves the settings for Bluetooth WakeOn function.

In the Device Emulator, the function retrieves information about BTInit.ini file. See BTInit.ini for
detail.

Calling Sequences

[C++]
LONG BTGetWakeOnStatus(
 DWORD *WakeOnStatus
)

[Visual Basic]
Public Shared Function BTGetWakeOnStatus(_
 ByRef WakeOnStatus As Int32 _
) As Int32

[C#]
public static Int32 BTGetWakeOnStatus(
 ref Int32 WakeOnStatus
);

Parameters

WakeOnStatus

This parameter is for retrieving Bluetooth WakeOn function settings. See
BTSetWakeOnStatus function for the values to retrieve.

Return Values

BTERR_SUCCESS : Normal end
BTERR_FAILED : Failed to retrieve device information.
BTERR_DRIVER : Driver error. In the Device Emulator, this value is not returned.
FUNCTION_UNSUPPORT : Unsupported error

 35

5.13 BTGetDeviceHandle
This function retrieves the device handle of Bluetooth equipment.

Calling Sequences

[C++]
LONG BTGetDeviceHandle(
 HANDLE *DeviceHandle,
 LPTSTR BTAddress
)

[Visual Basic]
Public Shared Function BTGetDeviceHandle(_
 ByRef DeviceHandle As Int32, _
 ByVal BTAddress As String _
) As Int32

[C#]
public static Int32 BTGetDeviceHandle(
 ref Int32 DeviceHandle,
 string BTAddress
);

Parameters

DeviceHandle

This parameter is for retrieving the device handle of Bluetooth equipment.

BTAddress

This parameter is for specifying the Bluetooth address.

Return Values

BTERR_SUCCESS : Normal end
BTERR_FAILED : Failed to retrieve the device handle of Bluetooth equipment.
BTERR_DRIVER : Driver error
FUNCTION_UNSUPPORT : Unsupported error

Notes:

• After retrieving the device handle for Bluetooth equipment, always carry out
BTGetDeviceInfo function to retrieve device information for Bluetooth equipment.

• An error will occur if this function is carried out when device handles of Bluetooth
equipment with specified address have been already retrieved with either
BTGetDeviceHandle function or BTInquiry function. If so, use device handles that have
been already retrieved.

 36

5.14 BTGetLastError
This function retrieves detail information about an error occurred when the Bluetooth Library is
called. The error detail retrieved with the function varies from model number of terminal to model
number. For this reason, it is necessary to check the terminal model number with
SysGetModelName function of the System Library.

Calling Sequences

[C++]
LONG BTGetLastError()

[Visual Basic]
Public Shared Function BTGetLastError() As Int32

[C#]
public static Int32 BTGetLastError()

Parameter

None

Return Values

This returns error code details. See Chapter 4.4 “Error Flag”.
Otherwise

FUNCTION_UNSUPPORT : Unsupported error

 37

5.15 BTRegisterLocalInfo
This function registers information about the Bluetooth device integrated in the terminal in the
registry. The registered device information in the registry will be set again when BTInitialize
function is carried out a next time.

In the Device Emulator, the function writes information in BTReg.ini file.

Calling Sequences

[C++]
LONG BTRegisterLocalInfo()

[Visual Basic]
Public Shared Function BTRegisterLocalInfo() As Int32

[C#]
public static Int32 BTRegisterLocalInfo()

Parameter

None

Return Values

BTERR_SUCCESS : Normal end
BTERR_FAILED : Failed to register device information.
BTERR_DRIVER : Driver error. In the Device Emulator, this value is not returned.
FUNCTION_UNSUPPORT : Unsupported error

Note:

To change Bluetooth device information and then register it in the registry, carry out
BTSetLocalInfo function to change prior to carrying out this function.

 38

5.16 BTRegisterDeviceInfo
This function registers Bluetooth equipment information in the registry. If the address of the
Bluetooth equipment information to be registered is already registered in the registry, the registered
Bluetooth equipment information will be overwritten by the new information.

In the Device Emulator, the function writes information in BTReg.ini file.

Calling Sequences

[C++]
LONG BTRegisterDeviceInfo(
 BTST_DEVICEINFO *DeviceInfo
)

[Visual Basic]
Public Shared Function BTRegisterDeviceInfo(_
 ByVal DeviceInfo As BTST_DEVICEINFO _
) As Int32

[C#]
public static Int32 BTRegisterDeviceInfo(
 BTST_DEVICEINFO DeviceInfo
);

Parameters

DeviceInfo

This is for specifying information for the Bluetooth equipment to register.

Return Values

BTERR_SUCCESS : Normal end
BTERR_FAILED : Failed to register Bluetooth equipment information in the registry.
BTERR_DRIVER : Driver error. In the Device Emulator, this value is not returned.
FUNCTION_UNSUPPORT : Unsupported error

 39

5.17 BTSearchDeviceInfo
This function retrieves Bluetooth equipment information in the registry by specifying search key.
Bluetooth equipment information that consistent with the search key can be also retrieved in the
registry.

In the Device Emulator, the function retrieves information about BTReg.ini file. See BTReg.ini
file.

Calling Sequences

[C++]
LONG BTSearchDeviceInfo(
 BTST_DEVICEINFO *DeviceInfo,
 DWORD *DeviceNumber,
 LPTSTR SearchKey
)

[Visual Basic]
Overloads Public Shared Function BTSearchDeviceInfo(_
 ByVal DeviceInfo As BTST_DEVICEINFO[], _
 ByRef DeviceNumber As Int32, _
 ByVal SearchKey As String _
) As Int32

[C#]
public static Int32 BTSearchDeviceInfo(
 BTST_DEVICEINFO[] DeviceInfo,
 ref Int32 DeviceNumber,
 string SearchKey
);

Parameters

DeviceInfo

This parameter is for specifying Bluetooth equipment information consistent with the
search key. Prepare number of array greater than the value specified in DeviceNumber
parameter. If “NULL” (in case of C++) or “IntPtr.Zero” (in case of Visual Basic or C#) is
specified in this parameter, only the number of Bluetooth equipment consistent with the
search key will be returned.

DeviceNumber

This parameter is for specifying the maximum value for Bluetooth equipment information
to retrieve. After carrying out this, the number of Bluetooth equipment consistent with the
search key will be stored.

 40

SearchKey

This is for specifying Bluetooth equipment information search key, either Bluetooth
address or Bluetooth equipment name. If “NULL” (in case of C++) or “IntPtr.Zero” (in
case of Visual Basic or C#) is specified in this parameter, all information about the
Bluetooth equipment registered in the registry will be returned.

Return Values

BTERR_SUCCESS : Normal end
BTERR_FAILED : Failed to search Bluetooth equipment information in the registry.
BTERR_DRIVER : Driver error. In the Device Emulator, this value is not returned.
FUNCTION_UNSUPPORT : Unsupported error

Notes:

• Prepare an array for the variable of structure that saves Bluetooth equipment information. If a
small value is specified in DeviceNumber parameter, Bluetooth equipment information
consistent with the search key may not be completely retrieved. Specify a value greater than
the number of Bluetooth devices expected to be consistent with the search key.

• If the number of Bluetooth equipment information consistent with the search key cannot be
predicted, first of all retrieve the number of Bluetooth equipment information consistent with
the search key. After that, secure dramatically variable for the structure that saves Bluetooth
equipment information, and then use the same search key to retrieve Bluetooth equipment
information.

 41

5.18 BTDeleteDeviceInfo
This function deletes Bluetooth equipment information in the registry.

In the Device Emulator, the function writes information in BTReg.ini file.

Calling Sequences

[C++]
LONG BTDeleteDeviceInfo(
 BT_DEVICEINFO *DeviceInfo
)

[Visual Basic]
Public Shared Function BTDeleteDeviceInfo(_
 ByVal DeviceInfo As BTST_DEVICEINFO _
) As Int32

[C#]
public static Int32 BTDeleteDeviceInfo(
 BTST_DEVICEINFO DeviceInfo
);

Parameters

DeviceInfo

This parameter is for specifying structure that stores Bluetooth equipment information to
delete.

Return Values

BTERR_SUCCESS : Normal end
BTERR_FAILED : Failed to delete Bluetooth equipment in the registry.
BTERR_DRIVER : Driver error. In the Device Emulator, this value is not returned.
FUNCTION_UNSUPPORT : Unsupported error

Note:

Use BTSearchDeviceInfo function to retrieve Bluetooth equipment information. An
error will occur if the Bluetooth equipment information (used as an argument) is not
consistent with the Bluetooth equipment information registered in the registry.

 42

5.19 BTGetDefaultDeviceInfo
This function retrieves information about Bluetooth equipment by default.

Calling Sequences

[C++]
LONG BTGetDefaultDeviceInfo(
 BTST_DEVICEINFO *DeviceInfo,
 LPTSTR PortName
)

[Visual Basic]
Public Shared Function BTGetDefaultDeviceInfo(_
 ByVal DeviceInfo As BTST_DEVICEINFO, _
 ByVal PortName As String _
) As Int32

[C#]
public static Int32 BTGetDefaultDeviceInfo(
 BTST_DEVICEINFO DeviceInfo,
 string PortName
);

Parameters

DeviceInfo

This parameter is for specifying the structure to retrieve information about Bluetooth
equipment set by default.

PortName

BTPORT_SERIAL : Virtual serial
BTPORT_DIALUP : Dial up

Return Values

BTERR_SUCCESS : Normal end
BTERR_FAILED : Failed to retrieve information about Bluetooth equipment set by default.
BTERR_DRIVER : Driver error. In the Device Emulator, this value is not returned.
FUNCTION_UNSUPPORT : Unsupported error

Note:

An error will occur if the terminal attempts to make communication establishment with
Bluetooth equipment that has not been set by default.

 43

5.20 BTSetDefaultDevice
This function sets up Bluetooth equipment by default to communicate with the terminal. The setting
will become effect when BTInitialize function is carried out a next time. Once Bluetooth
equipment registered by default to communicate with the terminal is specified by calling this
function, the same Bluetooth equipment can be searched and selected with BTSearchDeviceInfo
and BTSelectDevice functions as communication partner in a subsequent Bluetooth
communication for the terminal.

In the Device Emulator, the function does not perform, but stores the preset value as internal
variable. The value stored can be checked with BTGetDefaultDeviceInfo function.

Calling Sequences

[C++]
LONG BTSetDefaultDevice(
 BTST_DEVICEINFO *DeviceInfo,
 LPTSTR PortName
)

[Visual Basic]
Overloads Public Shared Function BTSetDefaultDevice(_
 ByVal DeviceInfo As BTST_DEVICEINFO, _
 ByVal PortName As String _
) As Int32

[C#]
public static Int32 BTSetDefaultDevice(
 BTST_DEVICEINFO DeviceInfo,
 string PortName
);

Parameters

DeviceInfo

This parameter is for specifying structure that saves information about Bluetooth equipment
set by default. If “NULL” (in case of C++) or “IntPtr.Zero” (in case of Visual Basic or C#)
is set in this parameter, there will be no Bluetooth equipment that is set by default.

PortName

BTPORT_SERIAL : Virtual serial
BTPORT_DIALUP : Dial up

 44

Return Values

BTERR_SUCCESS : Normal end
BTERR_FAILED : Failed to set up Bluetooth equipment by default that communicates with

the terminal.
BTERR_DRIVER : Driver error. In the Device Emulator, this value is not returned.
FUNCTION_UNSUPPORT : Unsupported error

Notes:

• Even if this function is carried out, Bluetooth equipment specified as partner with
BTSelectDevice function cannot be changed. Prior to carrying out this function, it is
necessary to carry out BTRegisterDeviceInfo function to register the Bluetooth equipment
information in the registry.

• Use BTSearchDeviceInfo function to retrieve the Bluetooth equipment information to use
with this function. An error will occur if the Bluetooth equipment information is not
consistent with the Bluetooth equipment information registered in the registry.

 45

5.21 BTGetLibraryStatus
This function retrieves the current status of Bluetooth library. It can be carried out even if
BTInitialize function has not been carried out.

Calling Sequences

[C++]
LONG BTGetLibraryStatus (
 DWORD *LibraryStatus
)

[Visual Basic]
Public Shared Function BTGetLibraryStatus(_
 ByRef LibraryStatus As Int32 _
) As Int32

[C#]
public static Int32 BTGetLibraryStatus(
 ref Int32 LibraryStatus
);

Parameters

LibraryStatus

This parameter is variable that retrieves one of the values listed below for the current status
of Bluetooth library.

BTSTATUS_NOT_INITIALIZED : Not initialized
BTSTATUS_INITIALIZED : Initialization completed
BTSTATUS_REINITIALIZING : Processing initial initialization. In the Device Emulator, this

parameter is ignored.
BTSTATUS_REINIT_FAILED : Initial initialization failed. In the Device Emulator, this

parameter is ignored.

Return Values

BTERR_SUCCESS : Normal end
BTERR_FAILED : Failed to set up device information.
BTERR_DRIVER : Driver error. In the Device Emulator, this value is not returned.
FUNCTION_UNSUPPORT : Unsupported error

 46

5.22 BTGetDeviceName
This function retrieves Bluetooth equipment name by specifying its Bluetooth address without
carrying out BTInquiry function if it is known.

In the Device Emulator, the function retrieves information about BTDeviceInfo[n].ini file. See
BTDeviceInfo[n].ini for detail.

Calling Sequences

[C++]
LONG BTGetDeviceName(
 BTST_DEVICEINFO *DeviceInfo,
 LPTSTR DeviceAddress
)

[Visual Basic]
Public Shared Function BTGetDeviceName(_
 ByVal DeviceInfo As BTST_DEVICEINFO, _
 ByVal DeviceAddress As String _
) As Int32

[C#]
public static Int32 BTGetDeviceName(
 BTST_DEVICEINFO DeviceInfo,
 string DeviceAddress
);

Parameters

DeviceInfo

This parameter is structure variable that saves Bluetooth equipment name.

DeviceAddress

This parameter is Bluetooth equipment address, such as "00:80:37:17:78:DA", for
retrieving its equipment name.

Return Values

BTERR_SUCCESS : Normal end
BTERR_FAILED : Failed to set up device information.
BTERR_DRIVER : Driver error. In the Device Emulator, this value is not returned.
FUNCTION_UNSUPPORT : Unsupported error

 47

5.23 BTGetConnectionStatus
This function retrieves connection status of the terminal with other Bluetooth equipment.

Calling Sequences

[C++]
LONG BTGetConnectionStatus(
 DWORD *ConnectionStatus
)

[Visual Basic]
Public Shared Function BTGetConnectionStatus(_
 ByRef ConnectionStatus As Int32 _
) As Int32

[C#]
public static Int32 BTGetConnectionStatus(
 ref Int32 ConnectionStatus
);

Parameters

ConnectionStatus

This parameter is variable that retrieves one of the values listed below for connection status
with other Bluetooth equipment.

BTCONNECT_NO_CONNECTION : Connection not established.
BTCONNECT_SERIAL_CLIENT : Connection established via virtual serial port.
BTCONNECT_SERIAL_SERVER : Connection established via virtual serial port.
BTCONNECT_PAN : Connection established via PAN profile.
BTCONNECT_OBEX_CLIENT : Connection established via OBEX profile.
BTCONNECT_OBEX_SERVER : Connection established via OBEX profile.
BTCONNECT_HEADSET_CLIENT : Connection established with BT headset.
BTCONNECT_HEADSET_SERVER : Connection established with BT headset.

Return Values

BTERR_SUCCESS : Normal end
BTERR_FAILED : Failed to set device information.
BTERR_DRIVER : Driver error. In the Device Emulator, this value is not returned.
FUNCTION_UNSUPPORT : Unsupported error

Note:

Every time BTConnectHeadset function is carried out, make sure that the connection in
Bluetooth has been established by carrying out BTGetConnectionStatus function.

 48

5.24 BTSetConnectionParameter
This function sets up parameters used for communication with other Bluetooth equipment. Setting
the parameter to either SR mode or Fast Connection changes frequency wave type used by the
integrated Bluetooth module and may reduce a time required to complete the communication.

In the Device Emulator, the function does not perform, but stores the preset value as internal
variable. The value stored can be checked with BTGetConnectionParameter function.

Calling Sequences

[C++]
LONG BTSetConnectionParameter(
 DWORD SRMode
 DWORD FastConnection
)

[Visual Basic]
Public Shared Function BTSetConnectionParameter(_
 ByVal SRMode As Int32, _
 ByVal FastConnection As Int32 _
) As Int32

[C#]
public static Int32 BTSetConnectionParameter(
 Int32 SRMode,
 Int32 FastConnection
);

Parameters

SRMode

This parameter is variable that sets up the SR mode to one of the modes listed below.
BTSRMODE_R0 : Sets SR mode to R0
BTSRMODE_R1 : Sets SR mode to R1
BTSRMODE_R2 : Sets SR mode to R2

FastConnection

This parameter is variable that sets up the Fast Connection mode to either of the status
listed below.

BTPARAM_DISABLE : Sets Fast Connection mode disabled.
BTPARAM_ENABLE : Sets Fast Connection mode enabled.

Return Values

BTERR_SUCCESS : Normal end
BTERR_FAILED : Failed to set up device information.
BTERR_DRIVER : Driver error. In the Device Emulator, this value is not returned.
FUNCTION_UNSUPPORT : Unsupported error

 49

5.25 BTGetConnectionParameter
This function retrieves parameters used when Bluetooth connection is established.

Calling Sequences

[C++]
LONG BTGetConnectionParameter(
 DWORD *SRMode
 DWORD *FastConnection
)

[Visual Basic]
Public Shared Function BTGetConnectionParameter(_
 ByRef SRMode As Int32, _
 ByRef FastConnection As Int32 _
) As Int32

[C#]
public static Int32 BTGetConnectionParameter(
 ref Int32 SRMode,
 ref Int32 FastConnection
);

Parameters

SRMode

This parameter is for retrieving SRMode of the terminal. See
BTSetConnectionParameter function for the values to retrieve.

FastConnection

This parameter is for retrieving Fast Connection mode of the terminal. See
BTSetConnectionParameter function for the values to retrieve.

Return Values

BTERR_SUCCESS : Normal end
BTERR_FAILED : Failed to set up device information.
BTERR_DRIVER : Driver error. In the Device Emulator, this value is not returned.
FUNCTION_UNSUPPORT : Unsupported error

 50

5.26 BTSetAFHStatus
This function sets up Bluetooth AFH function.

In the Device Emulator, the function does not perform, but stores the preset value as internal
variable. The value stored can be checked with BTGetAFHStatus function.

Calling Sequences

[C++]
LONG BTSetAFHStatus(
 DWORD AFHMode
 BYTE *AFHChannel
)

[Visual Basic]
Public Shared Function BTSetAFHStatus(_
 ByVal AFHMode As Int32, _
 ByVal AFHChannel As Byte() _
) As Int32

[C#]
public static Int32 BTSetAFHStatus(
 Int32 AFHMode,
 Byte[] AFHChannel
);

Parameters

AFHMode

This parameter is variable that sets up Bluetooth AFH mode selecting one of the values
listed below.

BTAFH_DISABLE : Disable the AFH setting.
BTAFH_AUTO : Enable the AFH setting (Automatic setting).
BTAFH_MANUAL : Enable the AFH setting. Frequency is specified in AFHChannel parameter.

AFHChannel

This parameter is variable that sets up AFH channel using BYTE-type variable with 10
bytes area. This mode is operable only when BTAFH_MANUAL is set enabled in the
AFHMode parameter.
However, even if BTAFH_DISABLE or BTAFH_AUTO is set in the AFHMode parameter,
be sure to specify a BYTE-type variable with 10 bytes or more.

 51

How to set up the AFHchannel parameter
For each channel of 79, you can specify “Enable” or “Disable.
In the 10 bytes (i.e. 80 bits) area, set up the relevant bit to “1” for enabling the channel or
“0” for disabling. The mapping of channel numbers "BTch" to the respective byte positions
is as follows.

Table 5.2

Byte 9 8 7 6 5 4 3 2 1
0

(note)

BTch 0 to 7 8 to 15
16 to
23

24 to
31

32 to
39

40 to
47

48 to
55

56 to
63

64 to
71

72 to
78

Note:
The most significant bit of the first byte must always be set to 0.

The relation of BTch and Frequency (2402 - 2480 MHz) is as follows:
Frequency [MHz] = 2402 + BTch

Example:

Frequency range : 2451[MHz] to 2473[MHz]
BTch : 49ch to 71ch
Setting value in AFHChannel : 00 FF FF FE 00 00 00 00 00 00

Return Values

BTERR_SUCCESS : Normal end
BTERR_FAILED : Failed to set up device information.
BTERR_DRIVER : Driver error. In the Device Emulator, this value is not returned.
FUNCTION_UNSUPPORT : Unsupported error

 52

5.27 BTGetAFHStatus
This function retrieves Bluetooth AFH function.

Calling Sequences

[C++]
LONG BTGetAFHStatus(
 DWORD *AFHMode
 BYTE *AFHChannel
)

[Visual Basic]
Public Shared Function BTGetAFHStatus(_
 ByRef AFHMode As Int32, _
 ByVal AFHChannel As Byte() _
) As Int32

[C#]
public static Int32 BTGetAFHStatus(
 ref Int32 AFHMode,
 Byte[] AFHChannel
);

Parameters

AFHMode

This parameter is variable that retrieves Bluetooth AFH mode. See BTSetAFHStatus
function for the values to retrieve.

AFHChannel

This parameter is variable that retrieves Bluetooth AFH channel. See BTSetAFHStatus
function for the values to retrieve.

Return Values

BTERR_SUCCESS : Normal end
BTERR_FAILED : Failed to set up device information.
BTERR_DRIVER : Driver error. In the Device Emulator, this value is not returned.
FUNCTION_UNSUPPORT : Unsupported error

 53

5.28 BTWaitForBtReady
After BTDeInitialize function has been carried out, this function waits for a time period to be
elapsed until when communication in Bluetooth takes place again.

In the Device Emulator, the function does not perform, but returns “BTERR_SUCCESS”.

Calling Sequences

[C++]
LONG BTWaitForBtReady()

[Visual Basic]
Public Shared Function BTWaitForBtReady() As Int32

[C#]
public static Int32 BTWaitForBtReady();

Parameters

None

Return Values

BTERR_SUCCESS : Normal end (possible to call BTInitialize function.)
BTERR_FAILED : Failed to set up device information. In the Device Emulator, this

value is not returned.
FUNCTION_UNSUPPORT : Unsupported error

 54

5.29 BTConnectSerial
This function establishes connection with Bluetooth equipment via virtual serial profile.

In the Device Emulator, the function initializes only the Bluetooth Library and stores a result of
the initialization as internal variable if it is succeeded.

Calling Sequences

[C++]
LONG BTConnectSerial (
 DWORD ConnectionMode,
 DWORD ConnectionTimeout,
 DWORD ReceiveTimeout
)

[Visual Basic]
Public Shared Function BTConnectSerial(_
 ByVal ConnectionMode As Int32, _
 ByVal ConnectionTimeout As Int32, _
 ByVal ReceiveTimeout As Int32 _
) As Int32

[C#]
public static Int32 BTConnectSerial(
 Int32 ConnectionMode,
 Int32 ConnectionTimeout,
 Int32 ReceiveTimeout
);

Parameters

ConnectionMode

This parameter is for specifying connection mode selecting either of the values listed
below.

BTCONNECT_SERIAL_CLIENT : Establish connection in master mode.
BTCONNECT_SERIAL_SERVER : Establish connection in slave mode.

ConnectionTimeout

This parameter is for specifying a time period in millisecond for timeout used in virtual
serial profile mode.

ReceiveTimeout

This parameter is for specifying a time period in millisecond for timeout used in receiving
data with BTReceiveSerialData function.

 55

Return Values

BTERR_SUCCESS : Normal end
BTERR_FAILED : Failed to set up device information.
BTERR_DRIVER : Driver error. In the Device Emulator, this value is not returned.
FUNCTION_UNSUPPORT : Unsupported error

 56

5.30 BTSendSerialData
This function sends data to Bluetooth equipment via virtual serial profile. It will operate in the same
way as when WriteFile of Windows API is carried out in access to virtual serial port.

In the Device Emulator, the function sets up the size of data set in the DataSize parameter in the
SendSize parameter.

Calling Sequences

[C++]
LONG BTSendSerialData(
 LPVOID Buffer,
 DWORD DataSize,
 DWORD *SendSize
)

[Visual Basic]
Public Shared Function BTSendSerialData(_
 ByVal Buffer As IntPtr, _
 ByVal DataSize As Int32, _
 ByRef SendSize As Int32 _
) As Int32

[C#]
public static Int32 BTSendSerialData(
 IntPtr Buffer,
 Int32 DataSize,
 ref Int32 SendSize
);

Parameters

Buffer

Pointer to data to be sent (equivalent to the second parameter of WriteFile function)

DataSize

Size of data in byte to be sent (equivalent to the third parameter of WriteFile function)

SendSize

Size of data in byte actually sent (equivalent to the fourth parameter of WriteFile function)

Return Values

BTERR_SUCCESS : Normal end
BTERR_FAILED : Failed to set up device information.
BTERR_DRIVER : Driver error. In the Device Emulator, this value is not returned.
FUNCTION_UNSUPPORT : Unsupported error

 57

5.31 BTReceiveSerialData
This function receives data from Bluetooth equipment via virtual serial profile. It will operate in the
same way as when ReadFile function of Windows API is carried out in access to virtual serial port.

In the Device Emulator, the function sets up the maximum data size set in the DataSize parameter in
the ReceivedSize parameter.

Calling Sequences

[C++]
LONG BTReceiveSerialData(
 LPVOID Buffer,
 DWORD DataSize,
 DWORD *ReceivedSize
)

[Visual Basic]
Public Shared Function BTReceiveSerialData(_
 ByRef Buffer As IntPtr, _
 ByVal DataSize As Int32, _
 ByRef ReceivedSize As Int32 _
) As Int32

[C#]
public static Int32 BTReceiveSerialData (
 ref IntPtr Buffer,
 Int32 DataSize,
 ref Int32 ReceivedSize
);

Parameters

Buffer

Pointer to variable that stores data to be received (equivalent to the second parameter of
ReadFile function)

DataSize

Maximum size of data in byte to receive (equivalent to the third parameter of ReadFile
function)

ReceivedSize

Size of data in byte actually received (equivalent to the fourth parameter of ReadFile
function)

 58

Return Values

BTERR_SUCCESS : Normal end
BTERR_FAILED : Failed to set up device information.
BTERR_DRIVER : Driver error. In the Device Emulator, this value is not returned.
FUNCTION_UNSUPPORT : Unsupported error

 59

5.32 BTDisconnectSerial
This function disconnects connection established with Bluetooth equipment via virtual serial profile.

In the Device Emulator, the function checks only if BTConnectSerial function has been carried
out.

Calling Sequences

[C++]
LONG BTDisconnectSerial()

[Visual Basic]
Public Shared Function BTDisconnectSerial() As Int32

[C#]
public static Int32 BTDisconnectSerial()

Parameter

None

Return Values

BTERR_SUCCESS : Normal end
BTERR_FAILED : Failed to set up device information.
BTERR_DRIVER : Driver error. In the Device Emulator, this value is not returned.
FUNCTION_UNSUPPORT : Unsupported error

 60

5.33 BTSetPANStatus
This function sets up status of Bluetooth PAN Adapter.

In the Device Emulator, the function does not perform, but stores the preset value as internal
variable. The value stored can be checked with BTGetPANStatus function.

Calling Sequences

[C++]
LONG BTSetPANStatus (
 DWORD BTPANStatus
)

[Visual Basic]
Public Shared Function BTSetPANStatus(_
 ByVal BTPANStatus As Int32 _
) As Int32

[C#]
public static Int32 BTSetPANStatus(
 Int32 BTPANStatus
);

Parameters

BTPANStatus

This parameter is variable that sets up status of PAN adaptor. Select either of the values
listed below.

BTPARAM_DISABLE : Disable the BT PAN adaptor.
BTPARAM_ENABLE : Enable the BT PAN adaptor.

Return Values

BTERR_SUCCESS : Normal end
BTERR_FAILED : Failed to set up device information.
BTERR_DRIVER : Driver error. In the Device Emulator, this value is not returned.
FUNCTION_UNSUPPORT : Unsupported error

 61

5.34 BTGetPANStatus
This function retrieves the status of Bluetooth PAN Adapter.

Calling Sequences

[C++]
LONG BTGetPANStatus (
 DWORD *BTPANStatus
)

[Visual Basic]
Public Shared Function BTGetPANStatus(_
 ByRef BTPANStatus As Int32 _
) As Int32

[C#]
public static Int32 BTGetPANStatus(
 ref Int32 BTPANStatus
);

Parameters

BTPANStatus

The parameter is variable that retrieves status of PAN adaptor. See BTSetPANStatus
function for the values to retrieve.

Return Values

BTERR_SUCCESS : Normal end
BTERR_FAILED : Failed to set up device information.
BTERR_DRIVER : Driver error
FUNCTION_UNSUPPORT : Unsupported error

 62

5.35 BTConnectPAN
This function establishes connection with Bluetooth equipment via Bluetooth PAN Profile.

In the Device Emulator, the function checks only if the Bluetooth Library has been initialized and
then stores a result of the checking as internal variable if it is succeeded.

Calling Sequences

[C++]
LONG BTConnectPAN(
 DWORD ConnectionTimeout
)

[Visual Basic]
Public Shared Function BTConnectPAN(_
 ByVal ConnectionTimeout As Int32 _
) As Int32

[C#]
public static Int32 BTConnectPAN(
 Int32 ConnectionTimeout
);

Parameters

ConnectionTimeout

This parameter is for specifying a time period in millisecond for timeout in Bluetooth
connection via Bluetooth PAN Profile.

Return Values

BTERR_SUCCESS : Normal end
BTERR_FAILED : Failed to set up device information.
BTERR_DRIVER : Driver error. In the Device Emulator, this value is not returned.
FUNCTION_UNSUPPORT : Unsupported error

 63

5.36 BTDisconnectPAN
This function terminates connection established with Bluetooth equipment via Bluetooth PAN
Profile.

In the Device Emulator, the function checks only if BTConnectPAN function has been carried out.

Calling Sequences

[C++]
LONG BTDisconnectPAN()

[Visual Basic]
Public Shared Function BTDisconnectPAN() As Int32

[C#]
public static Int32 BTDisconnectPAN()

Parameter

None

Return Values

BTERR_SUCCESS : Normal end
BTERR_FAILED : Failed to set up device information.
BTERR_DRIVER : Driver error. In the Device Emulator, this value is not returned.
FUNCTION_UNSUPPORT : Unsupported error

 64

5.37 BTConnectHeadset
This function establishes connection to Bluetooth headset.

In the Device Emulator, the function checks only if the Bluetooth Library has been initialized and
then stores a result of the checking as internal variable if it is succeeded.

Calling Sequences

[C++]
LONG BTConnectHeadset()

[Visual Basic]
Public Shared Function BTConnectHeadset() As Int32

[C#]
public static Int32 BTConnectHeadset()

Parameter

None

Return Values

BTERR_SUCCESS : Normal end
BTERR_FAILED : Failed to set up device information.
BTERR_DRIVER : Driver error. In the Device Emulator, this value is not returned.
FUNCTION_UNSUPPORT : Unsupported error

Notes:

• Prior to carrying out this function, it is necessary to set up Bluetooth equipment to be
connected using BTSelectDevice function or BTSetDefaultDevice function. An error
will occur if the Bluetooth equipment to be connected has not been set.

• Connection to Bluetooth headset will not be established by carrying out this function. After
carrying out this function, the partner Bluetooth headset must be operated to complete the
connection.

• To check whether or not the connection with Bluetooth headset has been established, carry
out this function followed by BTGetConnectionStatus function.

 65

5.38 BTDisconnectHeadset
This function terminates connection established with Bluetooth headset.

In the Device Emulator, the function checks only if BTConnectHeadset function has been carried
out.

Calling Sequences

[C++]
LONG BTDisconnectHeadset()

[Visual Basic]
Public Shared Function BTDisconnectHeadset() As Int32

[C#]
public static Int32 BTDisconnectHeadset()

Parameter

None

Return Values

BTERR_SUCCESS : Normal end
BTERR_FAILED : Failed to set up device information.
BTERR_DRIVER : Driver error. In the Device Emulator, this value is not returned.
FUNCTION_UNSUPPORT : Unsupported error

Notes:

• An error will occur if Bluetooth connection has not been established with
BTConnectHeadset function.

• Terminating connection established with partner Bluetooth equipment may take prolonged
period depending on the condition of the Bluetooth equipment.

• Carrying out this function is not necessary if the Bluetooth headset is operated to terminate
the connection.

 66

5.39 BTSetSoundPath
This function sets up status of sound path.

In the Device Emulator, the function does not perform, but stores the preset value as internal
variable. The value stored can be checked with BTGetSoundPath function.

Calling Sequences

[C++]
LONG BTSetSoundPath(
 DWORD SoundPath
)

[Visual Basic]
Public Shared Function BTSetSoundPath(_
 ByVal SoundPath As Int32 _
) As Int32

[C#]
public static Int32 BTSetSoundPath(
 Int32 SoundPath
);

Parameters

SoundPath

This parameter is variable that sets up status of sound path. Select either of the values listed
below.

BTSOUND_INTERNAL : Enable built-in speaker and microphone.
BTSOUND_HEADSET : Enable Bluetooth headset.

Return Values

BTERR_SUCCESS : Normal end
BTERR_FAILED : Failed to set up device information.
BTERR_DRIVER : Driver error. In the Device Emulator, this value is not returned.
FUNCTION_UNSUPPORT : Unsupported error

 67

5.40 BTGetSoundPath
This function retrieves the status of the sound path in the terminal.

Calling Sequences

[C++]
LONG BTGetSoundPath(
 DWORD *SoundPath
)

[Visual Basic]
Public Shared Function BTGetSoundPath(_
 ByRef SoundPath As Int32 _
) As Int32

[C#]
public static Int32 BTGetSoundPath(
 ref Int32 SoundPath
);

Parameters

SoundPath

This parameter is variable that retrieves the status of sound path. See BTSetSoundPath
function for the values to retrieve.

Return Values

BTERR_SUCCESS : Normal end
BTERR_FAILED : Failed to set up device information.
BTERR_DRIVER : Driver error. In the Device Emulator, this value is not returned.
FUNCTION_UNSUPPORT : Unsupported error

 68

5.41 BTSetHeadsetGain
This function sets up gains for speaker and microphone of the connected Bluetooth headset.

In the Device Emulator, the function does not perform, but stores the preset value as internal
variable. The value stored can be checked with BTGetHeadsetGain function.

Calling Sequences

[C++]
LONG BTSetHeadsetGain(
 DWORD SpeakerGain,
 DWORD MicrophoneGain
)

[Visual Basic]
Public Shared Function BTSetHeadsetGain(_
 ByVal SpeakerGain As Int32, _
 ByVal MicrophoneGain As Int32 _
) As Int32

[C#]
public static Int32 BTSetHeadsetGain(
 Int32 SpeakerGain,
 Int32 MicrophoneGain
);

Parameters

SpeakerGain

This parameter is variable that sets up speaker’s gain in the range of 0 to 15 for the
Bluetooth headset.

MicrophoneGain

This parameter is variable that sets up microphone’s gain in the range of 0 to 15 for
Bluetooth headset.

Return Values

BTERR_SUCCESS : Normal end
BTERR_FAILED : Failed to set up device information.
BTERR_DRIVER : Driver error. In the Device Emulator, this value is not returned.
FUNCTION_UNSUPPORT : Unsupported error

 69

5.42 BTGetHeadsetGain
This function retrieves gains for the connected Bluetooth headset.

Calling Sequences

[C++]
LONG BTGetHeadsetGain(
 DWORD *SpeakerGain,
 DWORD *MicrophoneGain
)

[Visual Basic]
Public Shared Function BTGetHeadsetGain(_
 ByRef SpeakerGain As Int32, _
 ByRef MicrophoneGain As Int32 _
) As Int32

[C#]
public static Int32 BTGetHeadsetGain(
 ref Int32 SpeakerGain,
 ref Int32 MicrophoneGain
);

Parameters

SpeakerGain

This parameter is for retrieving the gain for speaker. See BTSetHeadsetGain function for
the values to retrieve.

MicrophoneGain

This parameter is for retrieving the gain for microphone. See BTSetHeadsetGain
function for the values to retrieve.

Return Values

BTERR_SUCCESS : Normal end
BTERR_FAILED : Failed to set up device information.
BTERR_DRIVER : Driver error. In the Device Emulator, this value is not returned.
FUNCTION_UNSUPPORT : Unsupported error

 70

5.43 BTSetHeadsetServerStatus
This function sets up status of Bluetooth headset server.

In the Device Emulator, the function does not perform, but stores the preset value as internal
variable. The value stored can be checked with BTGetHeadsetServerStatus function.

Calling Sequences

[C++]
LONG BTSetHeadsetServerStatus(
 DWORD ServerStatus
)

[Visual Basic]
Public Shared Function BTSetHeadsetServerStatus(_
 ByVal ServerStatus As Int32 _
) As Int32

[C#]
public static Int32 BTSetHeadsetServerStatus(
 Int32 ServerStatus
);

Parameters

ServerStatus

This parameter is variable that sets up status of Bluetooth headset server. Select either of
the values listed below.

BTPARAM_DISABLE : Disable the Bluetooth headset server.
BTPARAM_ENABLE : Enable the Bluetooth headset server.

Return Values

BTERR_SUCCESS : Normal end
BTERR_FAILED : Failed to set up device information.
BTERR_DRIVER : Driver error. In the Device Emulator, this value is not returned.
FUNCTION_UNSUPPORT : Unsupported error

 71

5.44 BTGetHeadsetServerStatus
This function retrieves the status of Bluetooth headset server.

Calling Sequences

[C++]
LONG BTGetHeadsetServerStatus(
 DWORD *ServerStatus
)

[Visual Basic]
Public Shared Function BTGetHeadsetServerStatus(_
 ByRef ServerStatus As Int32 _
) As Int32

[C#]
public static Int32 BTGetHeadsetServerStatus(
 ref Int32 ServerStatus
);

Parameters

ServerStatus

This parameter is for retrieving the status of the server. See
BTSetHeadsetServerStatus function for the values to retrieve.

Return Values

BTERR_SUCCESS : Normal end
BTERR_FAILED : Failed to set up device information.
BTERR_DRIVER : Driver error. In the Device Emulator, this value is not returned.
FUNCTION_UNSUPPORT : Unsupported error

 72

5.45 BTSetOBEXFolder
This function sets up a folder used for communication via Object Push profile.

In the Device Emulator, the function does not perform, but stores the preset value as internal
variable. The value stored can be checked with BTGetOBEXFolder function.

Calling Sequences

[C++]
LONG BTSetOBEXFolder(
 LPTSTR FolderName
)

[Visual Basic]
Public Shared Function BTSetOBEXFolder(_
 ByVal FolderName As String _
) As Int32

[C#]
public static Int32 BTSetOBEXFolder(
 string FolderName
);

Parameters

FolderName

This parameter is variable that sets up a folder used for communication via Object Push
profile.

Return Values

BTERR_SUCCESS : Normal end
BTERR_FAILED : Failed to set up device information.
BTERR_DRIVER : Driver error. In the Device Emulator, this value is not returned.
FUNCTION_UNSUPPORT : Unsupported error

 73

5.46 BTGetOBEXFolder
This function retrieves folder used for communication via Object Push profile.

In the Device Emulator, the function checks only if the Bluetooth Library has been initialized.

Calling Sequences

[C++]
LONG BTGetOBEXFolder(
 LPTSTR FolderName,
 DWORD FolderLength
)

[Visual Basic]
Public Shared Function BTGetOBEXFolder(_
 ByVal FolderName As String, _
 ByVal FolderLength As Int32 _
) As Int32

[C#]
public static Int32 BTGetOBEXFolder(
 string FolderName,
 Int32 FolderLength
);

Parameters

FolderName

This parameter is variable that retrieves folder used for communication via Object Push
profile.

FolderLength

This parameter is variable that sets up the length of variable in FolderName parameter.

Return Values

BTERR_SUCCESS : Normal end
BTERR_FAILED : Failed to set up device information.
BTERR_DRIVER : Driver error. In the Device Emulator, this value is not returned.
FUNCTION_UNSUPPORT : Unsupported error

 74

5.47 BTSendOBEXFile
This function sends a file via Object Push profile.

In the Device Emulator, the function checks only if the Bluetooth Library has been initialized.

Calling Sequences

[C++]
LONG BTSendOBEXFile(
 LPTSTR FileName,
 DWORD ObjectType
)

[Visual Basic]
Public Shared Function BTSendOBEXFile(_
 ByVal FileName As String, _
 ByVal ObjectType As Int32 _
) As Int32

[C#]
public static Int32 BTSendOBEXFile(
 string FileName,
 Int32 ObjectType
);

Parameters

FileName

This parameter is for the name of file to send.

ObjectType

This parameter is object type of the file to be sent.
BTOBEX_OBJECT_VCARD : Business card
BTOBEX_OBJECT_VCALENDAR : Schedule
BTOBEX_OBJECT_VNOTE : Memo
BTOBEX_OBJECT_VMESSAGE : Mail

Return Values

BTERR_SUCCESS : Normal end
BTERR_FAILED : Failed to set up device information.
BTERR_DRIVER : Driver error. In the Device Emulator, this value is not returned.
FUNCTION_UNSUPPORT : Unsupported error

 75

6. Connection Procedure by Profile
This chapter explains the procedures for connecting and communicating with other Bluetooth
equipment using profiles supported by the terminal.

6.1 Registering Partner Bluetooth Equipment
Register partner Bluetooth equipment in accordance with the following procedures when the
Bluetooth device integrated in the terminal is used in master mode.

Figure 6.1

• The procedure (6) can be omitted.
• Carry out the procedure (8) to specify Bluetooth equipment used by default for partner

equipment.
• Carry out the procedure (9) to start a communication immediately after registering Bluetooth

equipment information.

(1) Initialize Bluetooth device

BTInitialize

(2) Set Bluetooth device info

BTGetLocalInfo
BTSetLocalInfo

(3) Register Bluetooth device info
in registry

BTRegistLocalInfo

(4) Inquire about Bluetooth
equipment to be communicated
with

BTIquiry

(5) Capture device info Bluetooth
equipment to be communicated
with

BTGetDeviceInfo

(6) Capture service info for
Bluetooth equipment to be
communicated with

BTGetServiceInfo

(7) Register info of Bluetooth
equipment to be communicated
with

BTRegistDeviceInfo

(8) Designate Bluetooth
equipment to be communicated
with using default
BTSetDefaultDevice

(9) Carry out communication with
Bluetooth equipment

(10) End use of Bluetooth device

BTDeInitialize

 76

6.2 Connections via Serial Profile
There are two connection methods available both via serial profile depending on the operation mode
of Bluetooth device integrated in the terminal.

Connections in Client (Master) Mode

Figure 6.2

• The procedures (2) and (3) are not required for connection to be established with Bluetooth

equipment specified by default.
• Carry out the procedure (4) when partner Bluetooth equipment makes a request for PassKey.
• Repeat the procedures (2) through (7) when serial communication takes place with multiple

Bluetooth equipments.

(1) Initialize Bluetooth device

BTInitialize

(2) Capture info for Bluetooth
equipment to be communicated
with from registry

BTSearchDeviceInfo

(3) Set Bluetooth pass key

BTSetPassKey

(5) Connect with Bluetooth
equipment
(virtual COM port option)

CreateFile

(6) Carry out communication with
Bluetooth equipment

WriteFile/ReadFile , etc

(7) Disconnect Bluetooth
(virtual COM port close)

CloseHandle

(8) End use of Bluetooth device

BTDeInitialize BTSelectDevice
to be communicated with

(4) Select Bluetooth equipment

 77

Connections in Server (Slave) Mode

Figure 6.3

• Repeat the procedures (2) through (9) when serial communication takes place with multiple

Bluetooth equipments.

(1) Initialize Bluetooth device

BTInitialize

(2) Set Bluetooth device info

BTGetLocalInfo
BTSetLocalInfo

(3) Register Bluetooth device info
in registry

BTRegistLocalInfo

(4) Set Bluetooth pass key

BTSetPassKey

(5) Open virtual COM port

CreateFile

(6) Connect with Bluetooth
equipment

Carry out connection
operation using
communication destination
Bluetooth equipment

(7) Carry out communication with
Bluetooth equipment

WriteFile/ReadFile , etc

(8) Disconnect Bluetooth

Carry out disconnection
operation at Bluetooth
equipment
(communication destination)

(9) Close virtual COM port

CloseHandle

(10) End use of Bluetooth device

BTDeInitialize

 78

6.3 Connections via Dial-Up Profile
Navigate to the terminal’s control panel and then Network and Dial-up Connections icon to
perform the procedures (1), (6), (7), and (8) described in the following flow chart.

Figure 6.4

• The procedures (3) and (4) are not required for connection with Bluetooth equipment by default.
• Carry out the procedure (4) when partner Bluetooth equipment makes a request for PassKey.
• Repeat the procedures (3) through (8) when serial communication takes place with multiple

Bluetooth equipments.

(1) Designate virtual COM port to
be used and then create dial
up connection

(2) Initialize Bluetooth device

BTInitialize

(3) Capture info for Bluetooth
equipment to be communicated
with from registry

BTSearchDeviceInfo

(4) Select Bluetooth equipment to
be communicated with

BTSelectDevice

(5) Set Bluetooth pass key

BTSetPassKey

(6) Carry out dial up connection

(7) Carry out communication with
Bluetooth equipment

Use communication
software or user application

(8) Disconnect dial up connection

(9) End use of Bluetooth device

BTDeInitialize

 79

6.4 Connections via LAN Profile
Navigate to the terminal’s control panel and then Network and Dial-up Connections icon to
perform the procedures (1), (6), (7), and (8) described in the following flow chart.

Figure 6.5

• The procedures (2) and (3) are not required for connection with default Bluetooth equipment.
• Carry out the procedure (4) when partner Bluetooth equipment makes a request for PassKey.
• Repeat the procedures (2) through (7) when serial communication takes place with multiple

Bluetooth equipments.

(1) Initialize Bluetooth device

BTInitialize

(2) Capture info for Bluetooth
equipment to be communicated
with in the registry

BTSearchDeviceInfo

(3) Select Bluetooth equipment to
be communicated with

BTSelectDevice

(4) Set Bluetooth pass key

BTSetPassKey

(5) Carry out LAN connection

(6) Carry out communication with
Bluetooth equipment

Use communication
software or user application

(7) Disconnect LAN

(8) End use of Bluetooth device

BTDeInitialize

 80

7. Notes to Programming
Bluetooth connection tool, Bluetooth Connection icon, built in the terminal is available to
establish a connection with other Bluetooth equipment. However, by using this Bluetooth library,
direct establishment and communication can be made by the terminal with Bluetooth equipment in
user application. Note however that the Bluetooth library and the Bluetooth connection tool cannot
be used simultaneously. For example, if the Bluetooth connection tool is running, close it prior to
starting up user application that uses the Bluetooth library.

7.1 Communication Profiles
The following shows communication profiles supported by the respective models. All the profiles
use virtual COM port for communication.

Serial profile (master) : COM6
Serial profile (slave) : COM7
Dial up profile : BTP1

 81

7.2 Bluetooth Communication Modes
To communicate between pieces of Bluetooth equipment, they are configured in a wireless network
called “Piconet”. Each Bluetooth equipment runs as either master or slave within this network.

If partner Bluetooth equipment is either Bluetooth modem, mobile phone, Access-Point, or printer,
the terminal operates in master mode and the partner Bluetooth equipment operates in slave mode. If
a partner Bluetooth equipment is either PC or other terminal (handheld terminal), one side operates
in master mode and the other operates in slave mode.

The following procedures explain in case the terminal operates in master mode.

Registering device information of partner Bluetooth equipment

1. Carry out Bluetooth equipment inquiry.
2. Retrieve information about Bluetooth equipment discovered by the inquiry.
3. Register the retrieved information about Bluetooth equipment into the registry.
4. If necessary, set partner Bluetooth equipment by default that communicates with the terminal.

Selecting Bluetooth equipment and carrying out communication

1. Retrieve information about Bluetooth equipment in the registry.
2. Select partner Bluetooth equipment to communicate with the terminal.
3. If the partner Bluetooth equipment has been set by default, the operation in the step above is not

required.
4. Establish a connection with the selected Bluetooth equipment and carry out communication.

The following procedures show in case the terminal operates in slave mode.

Registering device information about the terminal

1. Carry out an inquiry about the terminal by the partner Bluetooth equipment.
2. Register the device information for the terminal into the partner Bluetooth equipment.

Carrying out Bluetooth communication

1. Specify the terminal as Bluetooth equipment at the partner Bluetooth equipment to communicate.
2. Establish connection between the partner Bluetooth equipment and the terminal at the partner

Bluetooth equipment.
3. Carry out communication between the partner Bluetooth equipment and the terminal.

 82

8. Device Emulator
The following configuration files are required to make the Bluetooth Library run in the Device
Emulator. These configuration files are installed by default in the “\Storage Card\Bluetooth” path.
• BTInit.ini
• BTDeviceInfo[n].ini (n; a numeric in the range of 0 to 256)
• BTReg.ini

8.1 BTInit.ini
This configuration file stores information about initialization on devices. The following shows a
sample of the BTInit.ini file.
[Init]

Already=0

[LocalInfo]

LocalName="Emulator"

LocalAddress="00:00:00:00:00:00"

LocalDeviceMode=5

LocalClass1=1

LocalClass2=5

LocalClass3=0

Authentication=0

Encryption=0

[WakeOnStatus]

WakeOn=0

8.2 BTDeviceInfo[n].ini
This configuration file stores information about a device at communication partner. Adding this file
in the folder can increase the number of devices at the communication partner. The following shows
a sample of the BTDeviceInfo[n].ini file.

[DeviceInfo]

DeviceAddress="00:00:00:00:00:01"

DeviceName="BTDevice1"

DeviceClass1=1

DeviceClass2=5

DeviceClass3=0

ProfileUUID0=4353

ProfileUUID1=4354

PassKey="123"

 83

Table 8.1

[DeviceInfo] Section for device information at communication partner
DeviceAddress Specifies the address of a device in character string. Refer to BTST_DEVICEINFO

structure..
DeviceName Specifies the name of a device in character string with 81 characters (maximum) or

less. Refer to BTST_DEVICEINFO structure.
DeviceClass1 Specifies the class setup in numeric. Refer to BTST_DEVICEINFO structure.
DeviceClass2 Specifies the class setup in numeric. Refer to BTST_DEVICEINFO structure.
DeviceClass3 Specifies the class setup in numeric. Refer to BTST_DEVICEINFO structure.
ProfileUUID0 :
ProfileUUID16

Specifies the profile in numeric. Refer to BTST_DEVICEINFO structure.

PassKey Specifies PassKey for certification in character string. Refer to BTST_DEVICEINFO
structure.

8.3 BTReg.ini
This configuration stores information about Bluetooth equipment retrieved in carrying out
BTGetDefaultDeviceInfo function instead of BTSetDefaultDevice function.
In any event that BTSetDefaultDevice function is carried out, this configuration must be updated,
too.
The following shows a sample of the BTReg.ini file. For each parameter written in the sample,
refer to BTInit.ini and BTDeviceInfo[n].ini files.

[LocalInfo]

LocalName="Emulator"

LocalAddress="00:00:00:00:00:00"

LocalDeviceMode=5

LocalClass1=1

LocalClass2=5

LocalClass3=0

Authentication=0

Encryption=0

[DeviceInfo]

DeviceAddress="00:00:00:00:00:01"

DeviceName="BTDevice1"

DeviceClass1=1

DeviceClass2=5

DeviceClass3=0

ProfileUUID0=4353

ProfileUUID1=4354

PassKey="123"

	Editorial Record
	1. Overview
	2. Operation Environment
	Applicable Handheld Terminals
	OS
	Development Environment
	Supplied Files
	Steps to Start Up

	3. Structures
	3.1 BTST_LOCALINFO
	3.2 BTST_DEVICEINFO

	4. Constants
	4.1 Device Mode
	4.2 Device Class
	Major Device Class
	Minor Device Class
	Major Service Class
	Retrieving and Setting Device Class Parameters

	4.3 Service UUID
	4.4 Error Flag
	Error Category Flag
	Error Status Flag

	5. Functions List
	5.1 BTInitialize
	5.2 BTDeInitialize
	5.3 BTGetLocalInfo
	5.4 BTSetLocalInfo
	5.5 BTInquiry
	5.6 BTGetDeviceInfo
	5.7 BTGetServiceInfo
	5.8 BTSelectDevice
	5.9 BTSetPassKey
	5.10 BTTrustDevice
	5.11 BTSetWakeOnStatus
	5.12 BTGetWakeOnStatus
	5.13 BTGetDeviceHandle
	5.14 BTGetLastError
	5.15 BTRegisterLocalInfo
	5.16 BTRegisterDeviceInfo
	5.17 BTSearchDeviceInfo
	5.18 BTDeleteDeviceInfo
	5.19 BTGetDefaultDeviceInfo
	5.20 BTSetDefaultDevice
	5.21 BTGetLibraryStatus
	5.22 BTGetDeviceName
	5.23 BTGetConnectionStatus
	5.24 BTSetConnectionParameter
	5.25 BTGetConnectionParameter
	5.26 BTSetAFHStatus
	5.27 BTGetAFHStatus
	5.28 BTWaitForBtReady
	5.29 BTConnectSerial
	5.30 BTSendSerialData
	5.31 BTReceiveSerialData
	5.32 BTDisconnectSerial
	5.33 BTSetPANStatus
	5.34 BTGetPANStatus
	5.35 BTConnectPAN
	5.36 BTDisconnectPAN
	5.37 BTConnectHeadset
	5.38 BTDisconnectHeadset
	5.39 BTSetSoundPath
	5.40 BTGetSoundPath
	5.41 BTSetHeadsetGain
	5.42 BTGetHeadsetGain
	5.43 BTSetHeadsetServerStatus
	5.44 BTGetHeadsetServerStatus
	5.45 BTSetOBEXFolder
	5.46 BTGetOBEXFolder
	5.47 BTSendOBEXFile

	6. Connection Procedure by Profile
	6.1 Registering Partner Bluetooth Equipment
	6.2 Connections via Serial Profile
	Connections in Client (Master) Mode
	Connections in Server (Slave) Mode

	6.3 Connections via Dial-Up Profile
	6.4 Connections via LAN Profile

	7. Notes to Programming
	7.1 Communication Profiles
	7.2 Bluetooth Communication Modes
	Registering device information of partner Bluetooth equipment
	Selecting Bluetooth equipment and carrying out communication
	Registering device information about the terminal
	Carrying out Bluetooth communication

	8. Device Emulator
	8.1 BTInit.ini
	8.2 BTDeviceInfo[n].ini
	8.3 BTReg.ini

